3.17.68 \(\int \frac {(d+e x)^{7/2}}{(a^2+2 a b x+b^2 x^2)^3} \, dx\) [1668]

Optimal. Leaf size=188 \[ -\frac {7 e^3 \sqrt {d+e x}}{64 b^4 (a+b x)^2}-\frac {7 e^4 \sqrt {d+e x}}{128 b^4 (b d-a e) (a+b x)}-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}+\frac {7 e^5 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{128 b^{9/2} (b d-a e)^{3/2}} \]

[Out]

-7/48*e^2*(e*x+d)^(3/2)/b^3/(b*x+a)^3-7/40*e*(e*x+d)^(5/2)/b^2/(b*x+a)^4-1/5*(e*x+d)^(7/2)/b/(b*x+a)^5+7/128*e
^5*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2))/b^(9/2)/(-a*e+b*d)^(3/2)-7/64*e^3*(e*x+d)^(1/2)/b^4/(b*x+a)
^2-7/128*e^4*(e*x+d)^(1/2)/b^4/(-a*e+b*d)/(b*x+a)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {27, 43, 44, 65, 214} \begin {gather*} \frac {7 e^5 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{128 b^{9/2} (b d-a e)^{3/2}}-\frac {7 e^4 \sqrt {d+e x}}{128 b^4 (a+b x) (b d-a e)}-\frac {7 e^3 \sqrt {d+e x}}{64 b^4 (a+b x)^2}-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(7/2)/(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

(-7*e^3*Sqrt[d + e*x])/(64*b^4*(a + b*x)^2) - (7*e^4*Sqrt[d + e*x])/(128*b^4*(b*d - a*e)*(a + b*x)) - (7*e^2*(
d + e*x)^(3/2))/(48*b^3*(a + b*x)^3) - (7*e*(d + e*x)^(5/2))/(40*b^2*(a + b*x)^4) - (d + e*x)^(7/2)/(5*b*(a +
b*x)^5) + (7*e^5*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(128*b^(9/2)*(b*d - a*e)^(3/2))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{7/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx &=\int \frac {(d+e x)^{7/2}}{(a+b x)^6} \, dx\\ &=-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}+\frac {(7 e) \int \frac {(d+e x)^{5/2}}{(a+b x)^5} \, dx}{10 b}\\ &=-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}+\frac {\left (7 e^2\right ) \int \frac {(d+e x)^{3/2}}{(a+b x)^4} \, dx}{16 b^2}\\ &=-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}+\frac {\left (7 e^3\right ) \int \frac {\sqrt {d+e x}}{(a+b x)^3} \, dx}{32 b^3}\\ &=-\frac {7 e^3 \sqrt {d+e x}}{64 b^4 (a+b x)^2}-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}+\frac {\left (7 e^4\right ) \int \frac {1}{(a+b x)^2 \sqrt {d+e x}} \, dx}{128 b^4}\\ &=-\frac {7 e^3 \sqrt {d+e x}}{64 b^4 (a+b x)^2}-\frac {7 e^4 \sqrt {d+e x}}{128 b^4 (b d-a e) (a+b x)}-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}-\frac {\left (7 e^5\right ) \int \frac {1}{(a+b x) \sqrt {d+e x}} \, dx}{256 b^4 (b d-a e)}\\ &=-\frac {7 e^3 \sqrt {d+e x}}{64 b^4 (a+b x)^2}-\frac {7 e^4 \sqrt {d+e x}}{128 b^4 (b d-a e) (a+b x)}-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}-\frac {\left (7 e^4\right ) \text {Subst}\left (\int \frac {1}{a-\frac {b d}{e}+\frac {b x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{128 b^4 (b d-a e)}\\ &=-\frac {7 e^3 \sqrt {d+e x}}{64 b^4 (a+b x)^2}-\frac {7 e^4 \sqrt {d+e x}}{128 b^4 (b d-a e) (a+b x)}-\frac {7 e^2 (d+e x)^{3/2}}{48 b^3 (a+b x)^3}-\frac {7 e (d+e x)^{5/2}}{40 b^2 (a+b x)^4}-\frac {(d+e x)^{7/2}}{5 b (a+b x)^5}+\frac {7 e^5 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{128 b^{9/2} (b d-a e)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.28, size = 223, normalized size = 1.19 \begin {gather*} \frac {\sqrt {d+e x} \left (105 a^4 e^4+70 a^3 b e^3 (d+7 e x)+14 a^2 b^2 e^2 \left (4 d^2+23 d e x+64 e^2 x^2\right )+2 a b^3 e \left (24 d^3+128 d^2 e x+289 d e^2 x^2+395 e^3 x^3\right )-b^4 \left (384 d^4+1488 d^3 e x+2104 d^2 e^2 x^2+1210 d e^3 x^3+105 e^4 x^4\right )\right )}{1920 b^4 (b d-a e) (a+b x)^5}+\frac {7 e^5 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {-b d+a e}}\right )}{128 b^{9/2} (-b d+a e)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(7/2)/(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

(Sqrt[d + e*x]*(105*a^4*e^4 + 70*a^3*b*e^3*(d + 7*e*x) + 14*a^2*b^2*e^2*(4*d^2 + 23*d*e*x + 64*e^2*x^2) + 2*a*
b^3*e*(24*d^3 + 128*d^2*e*x + 289*d*e^2*x^2 + 395*e^3*x^3) - b^4*(384*d^4 + 1488*d^3*e*x + 2104*d^2*e^2*x^2 +
1210*d*e^3*x^3 + 105*e^4*x^4)))/(1920*b^4*(b*d - a*e)*(a + b*x)^5) + (7*e^5*ArcTan[(Sqrt[b]*Sqrt[d + e*x])/Sqr
t[-(b*d) + a*e]])/(128*b^(9/2)*(-(b*d) + a*e)^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.67, size = 207, normalized size = 1.10

method result size
derivativedivides \(2 e^{5} \left (\frac {\frac {7 \left (e x +d \right )^{\frac {9}{2}}}{256 \left (a e -b d \right )}-\frac {79 \left (e x +d \right )^{\frac {7}{2}}}{384 b}-\frac {7 \left (a e -b d \right ) \left (e x +d \right )^{\frac {5}{2}}}{30 b^{2}}-\frac {49 \left (a^{2} e^{2}-2 a b d e +b^{2} d^{2}\right ) \left (e x +d \right )^{\frac {3}{2}}}{384 b^{3}}-\frac {7 \left (e^{3} a^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right ) \sqrt {e x +d}}{256 b^{4}}}{\left (\left (e x +d \right ) b +a e -b d \right )^{5}}+\frac {7 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right )}{256 \left (a e -b d \right ) b^{4} \sqrt {b \left (a e -b d \right )}}\right )\) \(207\)
default \(2 e^{5} \left (\frac {\frac {7 \left (e x +d \right )^{\frac {9}{2}}}{256 \left (a e -b d \right )}-\frac {79 \left (e x +d \right )^{\frac {7}{2}}}{384 b}-\frac {7 \left (a e -b d \right ) \left (e x +d \right )^{\frac {5}{2}}}{30 b^{2}}-\frac {49 \left (a^{2} e^{2}-2 a b d e +b^{2} d^{2}\right ) \left (e x +d \right )^{\frac {3}{2}}}{384 b^{3}}-\frac {7 \left (e^{3} a^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right ) \sqrt {e x +d}}{256 b^{4}}}{\left (\left (e x +d \right ) b +a e -b d \right )^{5}}+\frac {7 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right )}{256 \left (a e -b d \right ) b^{4} \sqrt {b \left (a e -b d \right )}}\right )\) \(207\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^3,x,method=_RETURNVERBOSE)

[Out]

2*e^5*((7/256/(a*e-b*d)*(e*x+d)^(9/2)-79/384/b*(e*x+d)^(7/2)-7/30*(a*e-b*d)/b^2*(e*x+d)^(5/2)-49/384*(a^2*e^2-
2*a*b*d*e+b^2*d^2)/b^3*(e*x+d)^(3/2)-7/256*(a^3*e^3-3*a^2*b*d*e^2+3*a*b^2*d^2*e-b^3*d^3)/b^4*(e*x+d)^(1/2))/((
e*x+d)*b+a*e-b*d)^5+7/256/(a*e-b*d)/b^4/(b*(a*e-b*d))^(1/2)*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b*d-%e*a>0)', see `assume?` fo
r more detai

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 545 vs. \(2 (162) = 324\).
time = 2.17, size = 1105, normalized size = 5.88 \begin {gather*} \left [-\frac {105 \, {\left (b^{5} x^{5} + 5 \, a b^{4} x^{4} + 10 \, a^{2} b^{3} x^{3} + 10 \, a^{3} b^{2} x^{2} + 5 \, a^{4} b x + a^{5}\right )} \sqrt {b^{2} d - a b e} e^{5} \log \left (\frac {2 \, b d + {\left (b x - a\right )} e - 2 \, \sqrt {b^{2} d - a b e} \sqrt {x e + d}}{b x + a}\right ) + 2 \, {\left (384 \, b^{6} d^{5} - {\left (105 \, a b^{5} x^{4} - 790 \, a^{2} b^{4} x^{3} - 896 \, a^{3} b^{3} x^{2} - 490 \, a^{4} b^{2} x - 105 \, a^{5} b\right )} e^{5} + {\left (105 \, b^{6} d x^{4} - 2000 \, a b^{5} d x^{3} - 318 \, a^{2} b^{4} d x^{2} - 168 \, a^{3} b^{3} d x - 35 \, a^{4} b^{2} d\right )} e^{4} + 2 \, {\left (605 \, b^{6} d^{2} x^{3} - 1341 \, a b^{5} d^{2} x^{2} - 33 \, a^{2} b^{4} d^{2} x - 7 \, a^{3} b^{3} d^{2}\right )} e^{3} + 8 \, {\left (263 \, b^{6} d^{3} x^{2} - 218 \, a b^{5} d^{3} x - a^{2} b^{4} d^{3}\right )} e^{2} + 48 \, {\left (31 \, b^{6} d^{4} x - 9 \, a b^{5} d^{4}\right )} e\right )} \sqrt {x e + d}}{3840 \, {\left (b^{12} d^{2} x^{5} + 5 \, a b^{11} d^{2} x^{4} + 10 \, a^{2} b^{10} d^{2} x^{3} + 10 \, a^{3} b^{9} d^{2} x^{2} + 5 \, a^{4} b^{8} d^{2} x + a^{5} b^{7} d^{2} + {\left (a^{2} b^{10} x^{5} + 5 \, a^{3} b^{9} x^{4} + 10 \, a^{4} b^{8} x^{3} + 10 \, a^{5} b^{7} x^{2} + 5 \, a^{6} b^{6} x + a^{7} b^{5}\right )} e^{2} - 2 \, {\left (a b^{11} d x^{5} + 5 \, a^{2} b^{10} d x^{4} + 10 \, a^{3} b^{9} d x^{3} + 10 \, a^{4} b^{8} d x^{2} + 5 \, a^{5} b^{7} d x + a^{6} b^{6} d\right )} e\right )}}, -\frac {105 \, {\left (b^{5} x^{5} + 5 \, a b^{4} x^{4} + 10 \, a^{2} b^{3} x^{3} + 10 \, a^{3} b^{2} x^{2} + 5 \, a^{4} b x + a^{5}\right )} \sqrt {-b^{2} d + a b e} \arctan \left (\frac {\sqrt {-b^{2} d + a b e} \sqrt {x e + d}}{b x e + b d}\right ) e^{5} + {\left (384 \, b^{6} d^{5} - {\left (105 \, a b^{5} x^{4} - 790 \, a^{2} b^{4} x^{3} - 896 \, a^{3} b^{3} x^{2} - 490 \, a^{4} b^{2} x - 105 \, a^{5} b\right )} e^{5} + {\left (105 \, b^{6} d x^{4} - 2000 \, a b^{5} d x^{3} - 318 \, a^{2} b^{4} d x^{2} - 168 \, a^{3} b^{3} d x - 35 \, a^{4} b^{2} d\right )} e^{4} + 2 \, {\left (605 \, b^{6} d^{2} x^{3} - 1341 \, a b^{5} d^{2} x^{2} - 33 \, a^{2} b^{4} d^{2} x - 7 \, a^{3} b^{3} d^{2}\right )} e^{3} + 8 \, {\left (263 \, b^{6} d^{3} x^{2} - 218 \, a b^{5} d^{3} x - a^{2} b^{4} d^{3}\right )} e^{2} + 48 \, {\left (31 \, b^{6} d^{4} x - 9 \, a b^{5} d^{4}\right )} e\right )} \sqrt {x e + d}}{1920 \, {\left (b^{12} d^{2} x^{5} + 5 \, a b^{11} d^{2} x^{4} + 10 \, a^{2} b^{10} d^{2} x^{3} + 10 \, a^{3} b^{9} d^{2} x^{2} + 5 \, a^{4} b^{8} d^{2} x + a^{5} b^{7} d^{2} + {\left (a^{2} b^{10} x^{5} + 5 \, a^{3} b^{9} x^{4} + 10 \, a^{4} b^{8} x^{3} + 10 \, a^{5} b^{7} x^{2} + 5 \, a^{6} b^{6} x + a^{7} b^{5}\right )} e^{2} - 2 \, {\left (a b^{11} d x^{5} + 5 \, a^{2} b^{10} d x^{4} + 10 \, a^{3} b^{9} d x^{3} + 10 \, a^{4} b^{8} d x^{2} + 5 \, a^{5} b^{7} d x + a^{6} b^{6} d\right )} e\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="fricas")

[Out]

[-1/3840*(105*(b^5*x^5 + 5*a*b^4*x^4 + 10*a^2*b^3*x^3 + 10*a^3*b^2*x^2 + 5*a^4*b*x + a^5)*sqrt(b^2*d - a*b*e)*
e^5*log((2*b*d + (b*x - a)*e - 2*sqrt(b^2*d - a*b*e)*sqrt(x*e + d))/(b*x + a)) + 2*(384*b^6*d^5 - (105*a*b^5*x
^4 - 790*a^2*b^4*x^3 - 896*a^3*b^3*x^2 - 490*a^4*b^2*x - 105*a^5*b)*e^5 + (105*b^6*d*x^4 - 2000*a*b^5*d*x^3 -
318*a^2*b^4*d*x^2 - 168*a^3*b^3*d*x - 35*a^4*b^2*d)*e^4 + 2*(605*b^6*d^2*x^3 - 1341*a*b^5*d^2*x^2 - 33*a^2*b^4
*d^2*x - 7*a^3*b^3*d^2)*e^3 + 8*(263*b^6*d^3*x^2 - 218*a*b^5*d^3*x - a^2*b^4*d^3)*e^2 + 48*(31*b^6*d^4*x - 9*a
*b^5*d^4)*e)*sqrt(x*e + d))/(b^12*d^2*x^5 + 5*a*b^11*d^2*x^4 + 10*a^2*b^10*d^2*x^3 + 10*a^3*b^9*d^2*x^2 + 5*a^
4*b^8*d^2*x + a^5*b^7*d^2 + (a^2*b^10*x^5 + 5*a^3*b^9*x^4 + 10*a^4*b^8*x^3 + 10*a^5*b^7*x^2 + 5*a^6*b^6*x + a^
7*b^5)*e^2 - 2*(a*b^11*d*x^5 + 5*a^2*b^10*d*x^4 + 10*a^3*b^9*d*x^3 + 10*a^4*b^8*d*x^2 + 5*a^5*b^7*d*x + a^6*b^
6*d)*e), -1/1920*(105*(b^5*x^5 + 5*a*b^4*x^4 + 10*a^2*b^3*x^3 + 10*a^3*b^2*x^2 + 5*a^4*b*x + a^5)*sqrt(-b^2*d
+ a*b*e)*arctan(sqrt(-b^2*d + a*b*e)*sqrt(x*e + d)/(b*x*e + b*d))*e^5 + (384*b^6*d^5 - (105*a*b^5*x^4 - 790*a^
2*b^4*x^3 - 896*a^3*b^3*x^2 - 490*a^4*b^2*x - 105*a^5*b)*e^5 + (105*b^6*d*x^4 - 2000*a*b^5*d*x^3 - 318*a^2*b^4
*d*x^2 - 168*a^3*b^3*d*x - 35*a^4*b^2*d)*e^4 + 2*(605*b^6*d^2*x^3 - 1341*a*b^5*d^2*x^2 - 33*a^2*b^4*d^2*x - 7*
a^3*b^3*d^2)*e^3 + 8*(263*b^6*d^3*x^2 - 218*a*b^5*d^3*x - a^2*b^4*d^3)*e^2 + 48*(31*b^6*d^4*x - 9*a*b^5*d^4)*e
)*sqrt(x*e + d))/(b^12*d^2*x^5 + 5*a*b^11*d^2*x^4 + 10*a^2*b^10*d^2*x^3 + 10*a^3*b^9*d^2*x^2 + 5*a^4*b^8*d^2*x
 + a^5*b^7*d^2 + (a^2*b^10*x^5 + 5*a^3*b^9*x^4 + 10*a^4*b^8*x^3 + 10*a^5*b^7*x^2 + 5*a^6*b^6*x + a^7*b^5)*e^2
- 2*(a*b^11*d*x^5 + 5*a^2*b^10*d*x^4 + 10*a^3*b^9*d*x^3 + 10*a^4*b^8*d*x^2 + 5*a^5*b^7*d*x + a^6*b^6*d)*e)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(7/2)/(b**2*x**2+2*a*b*x+a**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 360 vs. \(2 (162) = 324\).
time = 1.06, size = 360, normalized size = 1.91 \begin {gather*} -\frac {7 \, \arctan \left (\frac {\sqrt {x e + d} b}{\sqrt {-b^{2} d + a b e}}\right ) e^{5}}{128 \, {\left (b^{5} d - a b^{4} e\right )} \sqrt {-b^{2} d + a b e}} - \frac {105 \, {\left (x e + d\right )}^{\frac {9}{2}} b^{4} e^{5} + 790 \, {\left (x e + d\right )}^{\frac {7}{2}} b^{4} d e^{5} - 896 \, {\left (x e + d\right )}^{\frac {5}{2}} b^{4} d^{2} e^{5} + 490 \, {\left (x e + d\right )}^{\frac {3}{2}} b^{4} d^{3} e^{5} - 105 \, \sqrt {x e + d} b^{4} d^{4} e^{5} - 790 \, {\left (x e + d\right )}^{\frac {7}{2}} a b^{3} e^{6} + 1792 \, {\left (x e + d\right )}^{\frac {5}{2}} a b^{3} d e^{6} - 1470 \, {\left (x e + d\right )}^{\frac {3}{2}} a b^{3} d^{2} e^{6} + 420 \, \sqrt {x e + d} a b^{3} d^{3} e^{6} - 896 \, {\left (x e + d\right )}^{\frac {5}{2}} a^{2} b^{2} e^{7} + 1470 \, {\left (x e + d\right )}^{\frac {3}{2}} a^{2} b^{2} d e^{7} - 630 \, \sqrt {x e + d} a^{2} b^{2} d^{2} e^{7} - 490 \, {\left (x e + d\right )}^{\frac {3}{2}} a^{3} b e^{8} + 420 \, \sqrt {x e + d} a^{3} b d e^{8} - 105 \, \sqrt {x e + d} a^{4} e^{9}}{1920 \, {\left (b^{5} d - a b^{4} e\right )} {\left ({\left (x e + d\right )} b - b d + a e\right )}^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="giac")

[Out]

-7/128*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^5/((b^5*d - a*b^4*e)*sqrt(-b^2*d + a*b*e)) - 1/1920*(105
*(x*e + d)^(9/2)*b^4*e^5 + 790*(x*e + d)^(7/2)*b^4*d*e^5 - 896*(x*e + d)^(5/2)*b^4*d^2*e^5 + 490*(x*e + d)^(3/
2)*b^4*d^3*e^5 - 105*sqrt(x*e + d)*b^4*d^4*e^5 - 790*(x*e + d)^(7/2)*a*b^3*e^6 + 1792*(x*e + d)^(5/2)*a*b^3*d*
e^6 - 1470*(x*e + d)^(3/2)*a*b^3*d^2*e^6 + 420*sqrt(x*e + d)*a*b^3*d^3*e^6 - 896*(x*e + d)^(5/2)*a^2*b^2*e^7 +
 1470*(x*e + d)^(3/2)*a^2*b^2*d*e^7 - 630*sqrt(x*e + d)*a^2*b^2*d^2*e^7 - 490*(x*e + d)^(3/2)*a^3*b*e^8 + 420*
sqrt(x*e + d)*a^3*b*d*e^8 - 105*sqrt(x*e + d)*a^4*e^9)/((b^5*d - a*b^4*e)*((x*e + d)*b - b*d + a*e)^5)

________________________________________________________________________________________

Mupad [B]
time = 0.66, size = 439, normalized size = 2.34 \begin {gather*} \frac {7\,e^5\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d+e\,x}}{\sqrt {a\,e-b\,d}}\right )}{128\,b^{9/2}\,{\left (a\,e-b\,d\right )}^{3/2}}-\frac {\frac {79\,e^5\,{\left (d+e\,x\right )}^{7/2}}{192\,b}-\frac {7\,e^5\,{\left (d+e\,x\right )}^{9/2}}{128\,\left (a\,e-b\,d\right )}+\frac {49\,e^5\,{\left (d+e\,x\right )}^{3/2}\,\left (a^2\,e^2-2\,a\,b\,d\,e+b^2\,d^2\right )}{192\,b^3}+\frac {7\,e^5\,\sqrt {d+e\,x}\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}{128\,b^4}+\frac {7\,e^5\,\left (a\,e-b\,d\right )\,{\left (d+e\,x\right )}^{5/2}}{15\,b^2}}{\left (d+e\,x\right )\,\left (5\,a^4\,b\,e^4-20\,a^3\,b^2\,d\,e^3+30\,a^2\,b^3\,d^2\,e^2-20\,a\,b^4\,d^3\,e+5\,b^5\,d^4\right )-{\left (d+e\,x\right )}^2\,\left (-10\,a^3\,b^2\,e^3+30\,a^2\,b^3\,d\,e^2-30\,a\,b^4\,d^2\,e+10\,b^5\,d^3\right )+b^5\,{\left (d+e\,x\right )}^5-\left (5\,b^5\,d-5\,a\,b^4\,e\right )\,{\left (d+e\,x\right )}^4+a^5\,e^5-b^5\,d^5+{\left (d+e\,x\right )}^3\,\left (10\,a^2\,b^3\,e^2-20\,a\,b^4\,d\,e+10\,b^5\,d^2\right )-10\,a^2\,b^3\,d^3\,e^2+10\,a^3\,b^2\,d^2\,e^3+5\,a\,b^4\,d^4\,e-5\,a^4\,b\,d\,e^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(7/2)/(a^2 + b^2*x^2 + 2*a*b*x)^3,x)

[Out]

(7*e^5*atan((b^(1/2)*(d + e*x)^(1/2))/(a*e - b*d)^(1/2)))/(128*b^(9/2)*(a*e - b*d)^(3/2)) - ((79*e^5*(d + e*x)
^(7/2))/(192*b) - (7*e^5*(d + e*x)^(9/2))/(128*(a*e - b*d)) + (49*e^5*(d + e*x)^(3/2)*(a^2*e^2 + b^2*d^2 - 2*a
*b*d*e))/(192*b^3) + (7*e^5*(d + e*x)^(1/2)*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2))/(128*b^4) + (
7*e^5*(a*e - b*d)*(d + e*x)^(5/2))/(15*b^2))/((d + e*x)*(5*b^5*d^4 + 5*a^4*b*e^4 - 20*a^3*b^2*d*e^3 + 30*a^2*b
^3*d^2*e^2 - 20*a*b^4*d^3*e) - (d + e*x)^2*(10*b^5*d^3 - 10*a^3*b^2*e^3 + 30*a^2*b^3*d*e^2 - 30*a*b^4*d^2*e) +
 b^5*(d + e*x)^5 - (5*b^5*d - 5*a*b^4*e)*(d + e*x)^4 + a^5*e^5 - b^5*d^5 + (d + e*x)^3*(10*b^5*d^2 + 10*a^2*b^
3*e^2 - 20*a*b^4*d*e) - 10*a^2*b^3*d^3*e^2 + 10*a^3*b^2*d^2*e^3 + 5*a*b^4*d^4*e - 5*a^4*b*d*e^4)

________________________________________________________________________________________